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[1] Proper determination of the shock normal is necessary for reliable determination of
observed heliospheric shock parameters and comparison of observations with theory. The
existing methods work sufficiently well for low and moderate Mach numbers
one-dimensional stationary shocks. Higher-Mach-number shocks are no longer planar at
the scales of the ion convective gyroradius or smaller. In rippled shock fronts, the local
shock normal may differ substantially from the global normal. The former is determined
by the local direction of the fastest variation of the magnetic field, while the latter is
determined by the far upstream and far downstream plasma conditions. Here we use 2-D
hybrid modeling of quasi-perpendicular collisionless shocks with moderate and high
Mach numbers to quantify the difference between the directions of the two normals. We
find that the angle between the local normal and the global normal may be as large as 40ı
within the front of a rippled heliospheric shock. The coplanarity method of the shock
normal determination is sensitive to the choice of the region for the magnetic field
averaging. We also find that the usage of the sliding averaging region in the close vicinity
of the shock transition provides satisfactory estimates of the global normal.
Citation: Ofman, L., and M. Gedalin (2013), Rippled quasi-perpendicular collisionless shocks: Local and global normals,
J. Geophys. Res. Space Physics, 118, 5999–6006, doi:10.1002/2013JA018780.

1. Introduction
[2] The angle between the shock normal and the upstream

magnetic field is one of the basic shock parameters. Many
of the shock properties depend crucially on this angle, and
the knowledge of this parameter is vital for comparison of
theory with spacecraft observations. The speed of the mag-
netosonic wave and, respectively, the corresponding Mach
number depends on this angle. The foot length and the
noncoplanar magnetic field magnitude, as well as the ion
reflection process and the ion ability of escape upstream
depend on the shock obliquity. Errors in the determina-
tion of the shock normal would affect proper evaluation of
the normal component of the shock velocity relative to the
upstream plasma, bringing about errors in the determination
of the Mach number, of the conversion of temporal measure-
ments into spatial ones, of the path along which the shock
is crossed, to list only the most obvious affected parame-
ters. Hence, the necessity of reliable determination of the
shock normal from the in situ measurements available in the
heliosphere. Indirect determination of the shock normal is
possible for steady (on the timescale of at least several ion
gyroperiods) shocks, like planetary bow shocks [Horbury
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et al., 2002] and involves usage of the global model for the
shock surface. This method cannot be applied to transient
shocks, like interplanetary ones. Direct determination is typ-
ically based on application of the coplanarity theorem and/or
Rankine-Hugoniot relations to single spacecraft of multi-
spacecraft measurements of the magnetic field and particle
distributions [Abraham-Shrauner, 1972; Russell et al., 1982;
Scudder et al., 1986; Viñas and Scudder, 1986; Mazelle et
al., 2010]. The latter are often of limited use because of
lower temporal resolution and poor resolution of the cold
solar wind beam. More sophisticated methods are available
for simultaneous multispacecraft measurements [Dunlop et
al., 2002; Horbury et al., 2001, 2002]. These methods imply
shock planarity at the scale of the spacecraft separation.

[3] Both coplanarity theorem and Rankine-Hugoniot rela-
tions refer to the asymptotically homogeneous and to
upstream and downstream gyrotropic states. While it is
easy to have these asymptotic regions in theory and numer-
ical simulations, in observed shocks, both upstream and
downstream regions may not reach a uniform state. The
upstream region may be “contaminated” with waves propa-
gating toward the shock [see, e.g., Greenstadt et al., 1975;
Russell et al., 1982]. Ion distributions gyrotropize slowly
behind the shock [Sckopke et al., 1983], and large ampli-
tude magnetic oscillations may persist well into downstream
[Balikhin et al., 2008; Russell et al., 2009]. Upstream and
downstream regions, available for the analysis, may be lim-
ited by, for example, a rotational discontinuity close to the
shock front [Scudder et al., 1986] or the magnetic pileup
boundary positioned too close to the (Venusian) shock tran-
sition [Walker et al., 2011]. Thus, in many cases, one has to
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determine the shock normal based on the measurements of
rather short upstream and downstream regions adjacent to
the shock ramp. Moreover, the local direction of the largest
gradient of the magnetic field is also of interest since the
local field geometry affects the particle motion in the ramp
and thus determines the features of reflected and transmitted
ion distribution as well as the electron distributions. Thus,
the local normal determination is also important. This task
is also complicated by, for example, a noticeable noncopla-
nar component of the magnetic field that appears inside the
shock transition [Gedalin, 1996] due to the nongyrotropy
of the ion distribution upon the shock crossing [Sckopke
et al., 1983; Burgess et al., 1989; Sckopke et al., 1990]
and the nondiagonal nature of the ion pressure tensor [Li
et al., 1995; Gedalin and Zilbersher, 1995; Gedalin and
Balikhin, 2008]. Yet because of the high quality of the
magnetic field measurements, the most frequent approach
remains using the coplanarity of the upstream and down-
stream mean magnetic fields and constancy of the normal
component [Newbury et al., 1998]. Since the magnetic field
profile is rarely monotonic and often contains large upstream
oscillations just ahead of the ramp and/or large downstream
oscillations just behind the ramp [Balikhin et al., 2008;
Russell et al., 2009], the method requires careful choice
of the upstream and downstream regions for averaging. In
many cases, the choice is difficult since oscillations per-
sist well across the shock to the region where the structure
cannot be assumed one-dimensional any longer. In partic-
ular, this problem arises when determining the normal to
the bow shocks at nonmagnetized planets (Venus and Mars),
where the whole magnetosheath may be of the order of sev-
eral gyroradii [Walker et al., 2011]. Rippling can develop
on the flanks of Coronal Mass Ejections (CME’s) driven
shocks due to inhomogeneity in the background solar wind
[e.g., Bale et al., 1999] that can modulate the excited radio
emission and affect the dynamic spectra of type-II radio
bursts as has been shown with the aid of MHD modeling
[e.g., Schmidt and Cairns, 2012]. However, MHD model-
ing is limited to large-scale rippling (i.e., � ion inertial
length), and cannot properly describe the growth of rippling
due to kinetic instabilities and the associated ion gyromo-
tions. Two-dimensional hybrid modeling is necessary in
order to study the small-scale quasi-perpendicular shock
front rippling properties [e.g., Winske and Quest, 1988;
Burgess, 2006].

[4] A number of different rippling regimes have been
discussed, mostly within numerical simulations. Using 2-D
hybrid simulations, Winske and Quest [1988] found in 2-D
spatially periodic modulations of the planar shock surface
with the maximum-to-maximum length of about six ion
inertial lengths. The rippling was shown to occur in the high-
Mach-number regime, MA > 6, and it was suggested that ion
pressure anisotropy caused modes/instabilities are respon-
sible for the rippling. Later, rippling on similar scales was
found by Lowe and Burgess [2003]; Burgess and Scholer
[2007] using 2-D hybrid simulations and attributed to the
surface waves developing due to the instability associated
with reflected ions. Observations by [Moullard et al., 2006;
Lobzin et al., 2008] confirmed the existence of this type
of rippling. Large-scale rippling with the wavelength of
about 20 ion inertial lengths was found in numerical simu-
lations by Yuan et al. [2009]. In that study the wavelength

was comparable to the simulation region width (30 ion
inertia lengths).

[5] Small-scale modulations (maximum-to-maximum
length of a fraction of the ion inertial length) have been
observed in particle-in-cell (PIC) simulations [Lembège and
Savoini, 1992; Savoini and Lembege, 1994; Lembège et al.,
2009; Yang et al., 2012]. In these studies the box width was
only several ion inertial lengths, and large-scale modula-
tions could not be reliably modeled. Present computational
limitations of PIC codes force to use the set of parameters
for which the Alfvén-to-light speed ratio is by about two
orders of magnitude higher than in the heliosphere. The
similarity of the modeled shocks to the observed ones in
these very different parameter regimes is yet to be shown
[Krasnoselskikh et al., 2013].

[6] Rippling with a much larger scale (� 100c/!pi) than
in the present study due to upstream waves is described by
Krauss-Varban et al. [2008]. Finally, variations of the solar
wind parameters, like heliolongitude variations of the IMF
direction, would affect the shock surface. The scale of these
variations are expected to be even larger. In the present paper
we study the rippling which is produced by the ion dynamics
at the shock front and adopt the point of view of Lowe and
Burgess [2003]; Burgess et al. [1989] (see also the review
by Hellinger [2003]) that modulation of the shock surface is
a result of surface instability.

[7] Nonstationarity of the shock, especially reforma-
tion [Matsukiyo and Scholer, 2006; Lobzin et al., 2007;
Lefebvre et al., 2009; Mazelle et al., 2010], complicates
the task even further. In the case of stationary shocks with
ripples [Lowe and Burgess, 2003; Burgess, 2006; Moullard
et al., 2006; Burgess and Scholer, 2007], one may distin-
guish between the global normal, which is ideally deter-
mined by the far upstream and far downstream states and
the local normal. The latter differs from the global one since
the shock front is no longer planar. In magnetohydrodynam-
ics, a shock front would be described by a surface whether a
discontinuous magnetic field jump occurs. Natural general-
ization of this description to real finite width shocks would
be defining the surface of the constant magnetic field magni-
tude, |B| = const. Accordingly, the local normal direction is
given by Onl = rB/|rB|. While this local normal can be deter-
mined everywhere through the shock, it is of direct physical
sense in the regions with the largest magnetic field gradi-
ents and magnetic field changes, like the ramp and larger
amplitude downstream oscillations (if any), with small-scale
fluctuation effects excluded. It is the global normal which
is eventually related to Rankine-Hugoniot relations, but it is
the local normal which is related to the shock fine structure
and the field governing the important particle dynamics, like
ion reflection and electron heating. Knowledge of the global
normal is necessary for proper identification of the upstream
parameters, while knowledge of the local normal is essential
for proper understanding of the particle dynamics inside the
shock transition layer. The latter is important for understand-
ing the ion and electron heating and acceleration processes.
Of particular interest is the local normal in the ramp, since
there the gradients are the largest.

[8] Recently, Ofman and Gedalin [2013] studied quasi-
perpendicular collisionless shock dynamics using 2-D
hybrid simulations and investigated the gyrating down-
stream ion distributions for low- and high-Mach-number
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Figure 1. The magnetic field magnitude |B| for the case (left column) M = 3.4 and (right column)
M = 4.7, ˇe = ˇi = 0.4. (top row) Filled contour plot of the magnetic field magnitude. (middle row) A
number of cuts of |B| for z = 2.6 (black), z = 4.42 (blue), z = 6.24 (red), z = 8.06 (green), z = 9.88
(magenta), and z = 11.7 (yellow). (bottom row) Cuts of Bx for the same z.

shocks. In this paper we focus our 2-D hybrid study on the
deviations of the local normal from the global one due to rip-
pling of high-Mach-number shocks. We show quantitatively
for the first time that the two may differ substantially and
estimate the errors due to the standard methods of the normal
determination applied to rippled shocks.

2. Simulation Setup
[9] In order to study the shock profile, we performed 2.5-

D hybrid simulations (in two spatial dimensions with all
three components of the velocities and fields). The approach
is rather standard and basically follows that of Winske and
Quest [1988], extended here by nearly two orders of magni-
tude larger number of particles and higher resolution, thanks

to the advances in the present day computing resources and
parallel programming. Below, we describe for completeness
briefly the modeling method—further details can be found in
Ofman and Gedalin [2013, and references therein]. Almost
perpendicular geometry, cos � = 0.05, 0.17 was chosen,
where � is the angle between the shock normal and the
upstream magnetic field. In such geometry the noncoplanar
component of the magnetic field is expected to be small. The
errors in the determination of the shock normal direction
are not small in this case because of the substantial effect
of the fluctuations at the background of the weak normal
component of the magnetic field. Thus, the effects due to rip-
pling should be significantly larger to be distinguished from
the fluctuation induced uncertainty. The upstream magnetic
field was taken to lie in the plane of the simulation. In what
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Figure 2. (left) The magnetic field magnitude and the local normal direction for the planar shock
(M = 3.4, ˇe = ˇi = 0.4). (right) The magnitude of the gradient of the magnetic field magnitude (arbitrary
relative units) and the local normal direction for the same shock. The normal direction is shown for the
regions where |r |B|| > 0.65 while |r |B||max = 2.2.

follows, we denote the coordinate along the shock normal by
x, the simulation plane is x – z, and y is along the noncopla-
narity direction. Electrons were treated here as a massless
isothermal fluid, while protons were treated as particles. The
electron and proton upstream temperatures are equal, so that
ˇe = ˇi (where “i ” indicates protons “p” in this study). The
spatial resolution was typically 1024�128 cells with grid
size of 0.2�0.2 in units of ion inertial length c/!pp, where
!pp = (4�npe2/mp)1/2 is the proton plasma frequency. We
used 200 particles per cell on average in the 2-D computa-
tional domain with a total of �26 million particles. The 2-D
hybrid code is parallelized, allowing rapid execution on mul-
tiple processors (typically 256 to 512). Each model particle
is in fact a “super-particle” representing many physical par-
ticles with the same position in phase space with the ratio
between them determined by density normalization. The
equations of motion for the particles were integrated at each
time step. The velocities and the positions were used to cal-
culate the currents and the charge density, which were in turn
used to calculate the fields from Maxwell’s equations. The
boundary conditions across the flow, in the z direction, were
periodic. In the flow direction, x, the upstream plasma was
injected at one boundary and reflected at the other, so that
the shock formed by the collisionless interaction between the
impacting plasma and the reflected stream (similar approach
was utilized by Ofman et al. [2009] in 1-D and Ofman and

Gedalin [2013] in 2-D hybrid studies). Simulations were run
up to the point where the shock structure was fully developed
(typically�20 proton gyroperiods). The field solutions were
obtained using finite differences for spatial derivatives and
the Rational Runge-Kutta (RRK) method [Wambecq, 1978]
for temporal integration.

3. Results
[10] A number of runs have been performed with moder-

ate and high Mach numbers and upstream ˇ. For compari-
son, we present here a one-dimensional shock and a rippled
shock with ˇe = ˇi = 0.4. Figure 1 shows the magni-
tude of the magnetic field for a nearly perpendicular shock
with the Alfvénic Mach number M = 3.4 (Figure 1, left
column, no rippling) and M = 4.7 (Figure 1, right col-
umn, rippling present), ˇe = ˇi = 0.4, and cos � = 0.05
(contour plot of Figure 1, top row). In what follows, all
coordinates are normalized to the ion inertial length c/!pi,
where !2

pi = 4�nue2/mi, and nu is the upstream ion number
density. The magnetic field is normalized on the upstream
magnetic field Bu. The shock transition occurs at x � 103.
The cuts of |B| at various z (Figure 1, middle row) show
that the shock is one-dimensional with only weak fluctua-
tions in the vicinity of the transition. This can be also seen
from the cuts for Bx (Figure 1, bottom row): substantial fluc-
tuations start at about x = 110, more than one upstream

Figure 3. (left) The magnetic field magnitude and the local normal direction for the rippled shock
(M = 4.7, ˇe = ˇi = 0.4). (right) The magnitude of the gradient of the magnetic field magnitude (arbitrary
units) and the local normal direction for the same shock. The latter is subsampled and shown only in the
regions where |r |B|| > 1.2, while |r |B||max = 3.5.
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Figure 4. The angle �gl between the local and the global
shock normals for the above rippled shock.

convective gyroradius behind the ramp. Beyond that point
the downstream region is affected by the wall. This situation
is rather typical for interplanetary shocks and bow shocks
at nonmagnetized planets: these shocks may be affected by
the presence of other boundaries (like the magnetic pileup
boundary) or MHD discontinuities. Large amplitude down-
stream oscillations of the magnetic field just behind the
ramp are related to the nongyrotropy of the ion distribu-
tion behind the shock [Balikhin et al., 2008; Ofman et al.,
2009; Ofman and Gedalin, 2013] and are components of the
shock structure.

[11] Figure 2 shows the magnetic field and the magnetic
field gradient for the planar shock, together with the direc-
tion of the local normal superimposed. In Figure 2, bottom,
the direction of the local normal is evaluated only for the
regions where |r |B|| > 0.65 (in arbitrary units, where the
maximum gradient is � 2.2). Of particular interest is the
local normal in the regions of substantial magnetic field
changes, for example, the ramp. The physical importance
of the local normal is that it is expected to determine the
direction of the cross-shock electric field. Indeed, in planar
shocks, the electric field along the shock normal in the ramp
is given approximately by the following relation [see, e.g.,
Gedalin, 1996; Gedalin and Balikhin, 2004]

Ex = –
B

4�ne
dB
dx

–
1
ne

dpe

dx
, (1)

where x is along the shock normal. In the case of a rip-
pled shock d/dx should be replaced with r, within the same
approximation, that is, in the ramp vicinity. As expected,
in the planar shock, no noticeable deviations of the local
normal from the global one are present.

[12] Figure 3 shows a fragment of the rippled shock (M =
4.7, ˇe = ˇi = 0.4), together with the gradient of the mag-
netic field and the direction of the local normal. Rippling
of the shock surface is clearly seen in the spatially vary-
ing (along the shock front) position of the ramp and in the
nonuniform magnetic field maximum, as well as in the fluc-
tuations of Bx in the shock transition. The wavelength of
the rippling (from one leftmost position of the ramp to the
nearest one along z axis) is � 5 ion inertial lengths which
is of the order of the upstream ion convective gyroradius.
The amplitude (the distance from the leftmost position of the
ramp to the nearest rightmost position) is about 0.5 of the ion
inertial length. The deviations of the local normal from the
global one is quantified by presenting the angle �gl between
the two in Figure 4. The local shock normal is calculated as
r |B|/|r |B||. The small-scale low-amplitude noise was sup-
pressed throughout by replacing |r |B||! (|r |B||2 +0.025)1/2.
The local normal is always in the x – z plane since there is no
y dependence in the simulation. The global normal is along
x. At the ramp, x � 98, the angle between the two normals
reaches the values 40ı.

[13] The above considered shocks are nearly perpendicu-
lar. Below we present the analysis of a more oblique rippled
shock with � = 80ı and ˇ = 0.4. Rippling was achieved
at a lower Mach number, M = 4.2 (compare with M = 4.7
for the nearly perpendicular shock). The relevant part of the
shock magnetic field, together with the gradient and the local
normal direction, is shown in Figure 5. The wavelength of
the rippling along the shock front is about 7(c/!pi), while
the amplitude is about one c/!pi, both slightly larger than
in the previously analyzed nearly perpendicular shock.
Figure 6 quantifies the deviations of the local shock nor-
mal from the global normal. The same reduction of the
small-scale noise as above was applied. There are substan-
tial deviations, up to 40ı, closely following the surface of
the magnetic profile. Figure 7 shows the angle between the
local shock normal and the local magnetic field vector. It is
worth noting that the deviations are in both directions: parts
of the shock surface have locally perpendicular geometry,
�nB � 90ı, while other parts are more oblique, �nB � 50ı,

Figure 5. (left) Magnetic field magnitude and direction of the local shock normal in the shock transition
vicinity, for the shock with M = 4.2, ˇ = 0.4, and � = 80ı. (right) Magnetic field gradient and the local
shock normal for the same shock for |r |B|| > 0.9 with max |r |B|| � 2.95.
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Figure 6. The angle �gl between the global and the local
shock normals for the rippled shock shown in Figure 5.

than would be in a planar shock. Such coexistence of sub-
stantially oblique and nearly perpendicular pieces of the
shock front may have significant implications for ion and
electron motion [Gedalin, 2001; Yang et al., 2012].

[14] The coplanarity method is the most used when the
shock normal is to be determined from single spacecraft
measurements. The method uses two vectors of the magnetic
field obtained by averaging over appropriate upstream and
downstream regions. For rippled shocks, one may expect
that the result would be sensitive to the choice of the down-
stream averaging region. In order to quantify this sensitivity,
we apply the coplanarity method to a number of down-
stream intervals. Namely, for each coordinate z (across the
simulation box), we use a number of pairs of magnetic
vectors. One of the pairs is always the upstream magnetic
field vector (easily determined by averaging over a suitable
upstream region) and the other one is the magnetic field
obtained by averaging over the region [x, x+3(c/!pi)], where
x is the coordinate along the simulation box. Applying the
coplanarity procedure to the pairs for various x, we obtain
the coplanarity derived normal as a function of x. Since

Figure 7. The angle between the local normal and the local
magnetic field for the rippled shock with � = 80ı (the
rippled shock shown in Figure 5).

Figure 8. The angle between the sliding coplanarity nor-
mal and the global normal for the rippled shock shown in
Figure 5.

the downstream averaging region slides along the shock
normal, we shall refer to the approach as the sliding copla-
narity method and the normal obtained in this way as
the sliding coplanarity normal. Figure 8 shows the angle
between the sliding coplanarity normal obtained by aver-
aging over [x, x + 3(c/!pi)] along z = const, and the
global normal. The sliding coplanarity normal is reasonably
close to the global normal only in the region sufficiently
close to the shock transition (within several ion inertial
lengths). Choosing the averaging interval further down-
stream may result in large errors in the determination of the
shock normal.

4. Conclusions
[15] The global shock normal refers to the uniform

upstream and downstream states and to the Rankine-
Hugoniot relations connecting these states. Knowledge of a
global shock normal is essential for proper assessment of the
basic shock parameters such as the angle between the shock
normal and upstream magnetic field. The latter is necessary
for the determination of the shock Mach number, which is
considered the most important shock parameter. Determina-
tion of the global shock normal in a one-dimensional sta-
tionary quasi-perpendicular shock from a single spacecraft
magnetic field measurements may be complicated by the
presence of the downstream oscillations due to the nongy-
rotropy of the ion distribution upon crossing the shock.
Additional difficulties may arise because of a short down-
stream region available for measurements. Strictly speaking,
the coplanarity theorem is not applicable in these cases. Yet
rather good estimates can be done by applying the copla-
narity method to the field which is averaged over a properly
chosen downstream interval, where excursions of the mag-
netic field from the coplanarity plane may be expected to
cancel each other.

[16] In order to overcome this difficulty, one can employ
detailed numerical simulations of the shock front topology
on the rippling (small) scale. Here we used 2-D hybrid sim-
ulations to study moderate- and high-Mach-number quasi-
perpendicular collisionless shocks. The former case leads to
one-dimensional shock front structure, and the later forms a
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Figure 9. Four snapshots of the magnetic field magnitude, showing the development of the rippling for
the shock in Figure 1, right column.

rippled shock front. In planar shocks the local normal coin-
cides with the global normal. In a rippled shock the local
normal, defined as the direction of the fastest magnetic field
increase, may differ substantially from the global normal.
Knowledge of the local normal is essential for understand-
ing the dynamics of the particles, in particular, electrons,
inside the shock front. We found that even in the case of
weak rippling considered here the angle between the two
normals may be as large as 40ı. We conclude that there is
no apparent way to determine the local normal from single
spacecraft measurements. Two-dimensional inhomogeneity
persist well beyond the transition layer, which makes the
determination of the global shock normal from coplanarity
even more difficult. Here we suggest the sliding copla-
narity method where the downstream averaging interval
slides along the path of the spacecraft, for the determi-
nation of the global shock normal. If the obtained shock
normal remains approximately constant within several ion
inertial lengths just beyond the shock transition, there are
good chances that this normal is reasonably aligned to the
global normal.

[17] The numerically obtained characteristics of the rip-
pling (wavelength between the ion inertial length and ion
convective gyroradius, amplitude about one ion inertial
length, and decay toward downstream) show that it is likely
to be the result of a corrugation instability of the shock
front. Some indications of such instability may be seen from
Figure 9, showing the development of the rippling for the
shock in Figure 1, right column. Rippling first appears about
six ion gyroperiods from the beginning of the run, when

the shock front has already moved sufficiently far from the
wall to allow free gyration of the transmitted ions behind the
ramp. The appearance of the perturbations slightly down-
stream of the main magnetic jump is consistent both with
the MHD corrugation instability option (no perturbation can
occur upstream) and with the plausible scenario where the
gyrating distribution of the transmitted ions becomes unsta-
ble with respect to modulation along the shock front. At later
times the rippling evolves to the stage where the upstream
edge of the ramp is not planar anymore. This pattern remains
rather stable, while further downstream the rippling decays.
In order to shed light on the nature of the instability, these
numerical simulations should be complemented with analyt-
ical work, which is in progress.

[18] Acknowledgments. L.O. would like to acknowledge discussions
with A. F. Viñas, and support by NASA grant NNX10AC56G.

[19] Philippa Browning thanks the reviewers for their assistance in
evaluating this paper.
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